Towards Improved Epilepsia Diagnosis by Unsupervised Segmentation of Neuropathology Tissue Sections using Ripley s-ˆl Features

Size: px
Start display at page:

Download "Towards Improved Epilepsia Diagnosis by Unsupervised Segmentation of Neuropathology Tissue Sections using Ripley s-ˆl Features"

Transcription

1 Towards Improved Epilepsia Diagnosis by Unsupervised Segmentation of Neuropathology Tissue Sections using Ripley s-ˆl Features Timm Schoening 1, Volkmar H. Hans 2, Tim W. Nattkemper 1 1 Biodata Mining Group, Faculty of Technology, Bielefeld University 2 Institute of Neuropathology, Evangelisches Krankenhaus Bielefeld, Germany tschoeni@cebitec.uni-bielefeld.de Abstract. The analysis of architectural features in neural tissue sections and the identification of distinct regions is challenging for computer aided diagnosis (CAD) in neuropathology. Due to the difficulty of locating a tissue s origin and alignment as well as the vast variety of structures within such images an orientation independent (i. e. rotation invariant) approach for tissue region segmentation has to be found to encode the structural features of neural layer architecture in the tissue. We propose to apply the Ripley s-ˆl function, originating from the field of plant ecology, to compute feature vectors encoding the spatial statistics of point patterns described by selectively stained cells. Combining the Ripley s ˆL features with unsupervised clustering enables a segmentation of tissue sections into neuropathological areas. 1 Introduction Visual inspection of microscopy images from neural tissue sections taken from human brains immediately show a variety of structure orientation and distribution of neural cells (Fig. 1a). Depending on the tissue s origin, the position and direction of the cut and the selected part of the tissue to be captured, several input factors determine the initial data to be analyzed. The images analyzed here contained captions of the cortical layers of the human brain. These layers are indexed by roman numbers. Beginning at the outside with layer I which is an almost empty region, five layers of different internal structure follow, ending with layer VI where the amount of neurons faints towards the white matter (Fig. 1b). By just looking at the images, be it the original microscopy outcome or a binarized or centroided one, it is possible to distinguish some major structures although it is a subjective task. Hence the challenge is to enable a computer to identify similar regions, even by means of minor dissimilarities, making it possible to get an objective, reproducible and understandable identification of tissue structures and distortions in the neural architecture. To gain an unbiased insight to the data, we chose to apply the Ripley s-ˆl function, which has only recently been introduced to the field of microscopy [1].

2 2 Materials and Methods 2.1 Imaging Protocol Towards Improved Epilepsia Diagnosis 45 Diagnostic samples were derived from neurosurgical resections at the Bethel Epilepsy Center, Bielefeld, Germany for therapeutic purposes, routinely processed for formalin fixation and paraffin embedded. Four µm thick microtome sections were immunostained using an antibody against NeuN, a marker labeling almost all mature cortical neurons. Positive staining of cells rendered them brown, leaving surrounding structures with a faint blue counterstain. Archival slides of 19 cases from the years 2009 and 2010 were selected for representing largely normal lateral temporal isocortex cut perpendicular to the brain surface. Slides were analyzed on a Zeiss Axioskop 2 plus microscope with a Zeiss Achroplan 2.5x/0.07 lens. After manually focusing and automated background correction, pixels, 24 bit, true color RGB pictures were taken at standardized 3200 K light temperature in TIF format using Zeiss AxioVision 3.1 software and a Zeiss AxioCam HRc digital color camera (Carl Zeiss AG, Oberkochen, Germany). All images are fully anonymized and our work did not influence the diagnostic process or the patient s treatment. 2.2 Segmentation The Ripley s- ˆK function [2] is defined for point patterns, so nuclei segmentation was applied to all images using a color channel based algorithm, that takes the average of the three channels of the RGB image at each pixel and compares this value to a given thresholding parameter. All values below this threshold were treated as background, all values above or equal were thought of as neural cells. The binary image for different thresholds was visually compared to the estimated result and a threshold value of about 70 has shown good outcomes. To get a point pattern, the binarized image was segmented, i.e. all connected pixels were combined to a cell region and the centroid of this region was computed as the cells representative point (RP). All RPs together create the nuclei point pattern of an image or an image region. 2.3 Ripleys- ˆL Function The original Ripley function was developed as the Ripley s- ˆK function which analyses the distribution of n points in a given area A. It centers an imaginary circle of a given radius at each point of the observed pattern and counts the number of other points found within this circle. This number is set into relation to the expected amount of points within the circle determined by the size of the complete region ( study region A) and the total number of points (n) and then summed up for all points i. The ˆK value ˆK(r) = A n 2 n n i=1 j=1 δ ij (r) C i (r) (1)

3 46 Schoening et al. is computed for all radii within a given interval (i.e. from r = 1 to r = r max ), with δ in the numerator is 1 for point distances d(i,j) < r, else it is 0. The denominator is the fraction of the circle area with radius r at point i within the study region so the point counts for points i close to the study region borders are adjusted [3]. A drawback of the ˆK function are its fast growing values for increasing radii. Therefore the ˆL function was introduced which is a normalized representation and has values around zero ˆL(r) = ˆK(r) π r (2) ˆL values above zero for a given radius indicate more, values below zero indicate less points within this radius than expected. 2.4 Confidence Envelopes To evaluate the significance of an observed point pattern, a reference point pattern is required. Therefore usually the assumed pattern creation process is simulated to create a set of further point patterns [4]. There is a variety of possible point processes, the easiest of which is complete spatial randomness which was used here. We simulated a similar study region and randomly distributed the same amount of points as in the original pattern within this region. We then again calculated the ˆL function and repeated this procedure nineteen times to yield 95 percent confidence envelopes by taking the highest and lowest calculated values for each radius as envelope limits. 2.5 Feature Set Each captured pixel image was cut into overlapping tiles. Each tile was pixel and the overlap in each direction was 140 pixels creating a set of tiles. Each tile was represented by one Ripley s-ˆl feature vector, yielding 10,324 feature vectors per image. To avoid edge effects the tiles had to be completely inside the image, leaving a 70 pixel border at each side which was not analyzed. We then computed standard point pattern features like density (λ), mean point distance ( d) and deviation of mean distance (σ). The density gave good approximations for the underlying brain structure as can be expected. But being a one-dimensional measure, it was not able to identify semantic differences between the layers, e.g. layers I and VI (Fig. 1, B) both feature low density but resemble the far inner/outer layer and show distinctive structures at the transitions towards their neighboring layers. To compute Ripley s-ˆl based features, we computed the ˆL function (with r max = 20) on each tile s point pattern, so A = in (1), and calculated features from the resulting ˆL function like the amount of null points (N), area above (I a ), below (I b ) and outside (I o ) confidence envelopes. In order to achieve a compact representation of the ˆL function shape, we approximated the ˆL-function by a polynomial of

4 Towards Improved Epilepsia Diagnosis 47 degree m and used the polynomial coefficients as features. However in our iniˆ functions numerical tial experiments we found that we had to include all the L values to get a more comprehensive description of its slope. Since we needed to take the confidence envelopes into account here, we calculated a shifted version ˆ function, that is zero for all radii at which the function is within the of the L confidence envelope and the difference between the function and the envelope otherwise. As a result of several experiments we found, that a joint feature vector v, containing density (λ) and all numerical values of the original as well as ˆ function, produced the best results and so we joined those features the shifted L to a 41-dim feature space. 2.6 Clustering, Segmentation and Visualization The feature vectors from all tiles of all images were fused to one training set (19 10,324 = 196,156 items). Each vector was normalized to v = 1 before clustering. Batch k-means was applied to fit k=20 prototype vectors vα,α=1..20 to regions of high feature vector density. The clustering was stopped if at most 50 iterations were performed or less than 0.1 % of the assignments of feature vectors to their best matching unit (BMU) changed during one iteration. Afterwards each pixel was mapped to its BMU to achieve a first segmentation i.e. Fig. 1. A: an original input image, beginning on the left with white matter, then layers VI to I, attached to the right is the next cerebral gyrus, again beginning with layer I and II; B: a hand labeled image with highlighted regions and an arbitrary color coding; C: The original image as a background with a density overlay; D: The clustering result where less occupied regions are dark blue whereas the filled layers are purple and pink at sharp edges towards empty regions.

5 48 Schoening et al. pixel labeling result. To visualize and evaluate this segmentation result, each prototype v α was assigned to a RGB color (r,g,b) α. To preserve topology in the mapping from the feature to the color space, we assigned RGB components using projections of the prototype vectors onto the eigenvectors belonging to the three highest eigenvalues of the feature set (Fig. 1d). We reran the experiments with the same settings to confirm the cluster results and found that small differences can occur due to the randomization effects during confidence envelope calculation. 3 Results The segmented result (Fig. 1d) shows a layered structure comparable to the density image (Fig. 1c). However the color scale compared to density of the prototypes shows that the prototypes describe a manifold of a higher dimension i.e. the features encode spatial features more complex than density. At least three eigenvectors, belonging to the three highest eigenvalues are necessary to encode 95 percent of the data variance. The less occupied regions are separated into the white matter and layer I. Layers II to VI show similar results as both feature pattern distributions of moderate to high density and are only discerned by their relative position to each other. The resulting structure shows good overlap with the hand labeled image (Fig. 1, B) although there are differences especially for layers V and VI where the subjective coloring shows a smaller region V but the data driven approach assigns more tiles to the comparable region. 4 Discussion The outcome of our proposed method used as an initial attempt is encouraging for further optimization. Beginning with binarization and centroid finding, moving on to feature selection and normalization, ending up with clustering and result visualization, every component of this project could be improved. On the other hand every part of it is simple and easily understandable which is important to avoid explanation problems of black-box solutions. Our results are promising to provide in the future a computer aided tool for visualizing subtle developmental brain abnormalities associated with human epilepsy. References 1. Mattfeld T, Eckel S, Fleischer F, et al. Statistical analysis of labelling patterns of mammary carcinoma cell nuclei on histological sections. J Microscopy. 2009;235: Ripley BD. The second-order analysis of stationary point processes. J Appl Prob. 1976;13: Goreaud F, Pelissier R. On explicit formulas of edge effect correction for Ripley s K-function. J Veget Sci. 1999;10: Wiegand T, Moloney KA. Rings, circles and null-models for point pattern analysis in ecology. Oikos. 2004;104:

SUPPLEMENTARY FILE S1: 3D AIRWAY TUBE RECONSTRUCTION AND CELL-BASED MECHANICAL MODEL. RELATED TO FIGURE 1, FIGURE 7, AND STAR METHODS.

SUPPLEMENTARY FILE S1: 3D AIRWAY TUBE RECONSTRUCTION AND CELL-BASED MECHANICAL MODEL. RELATED TO FIGURE 1, FIGURE 7, AND STAR METHODS. SUPPLEMENTARY FILE S1: 3D AIRWAY TUBE RECONSTRUCTION AND CELL-BASED MECHANICAL MODEL. RELATED TO FIGURE 1, FIGURE 7, AND STAR METHODS. 1. 3D AIRWAY TUBE RECONSTRUCTION. RELATED TO FIGURE 1 AND STAR METHODS

More information

Detection of Focal Cortical Dysplasia Lesions in MRI using Textural Features

Detection of Focal Cortical Dysplasia Lesions in MRI using Textural Features Detection of Focal Cortical Dysplasia Lesions in MRI using Textural Features Christian Loyek 1, Friedrich G. Woermann 2, Tim W. Nattkemper 1 1 Applied Neuroinformatics, Faculty of Technology, Bielefeld

More information

Chapter 4. Clustering Core Atoms by Location

Chapter 4. Clustering Core Atoms by Location Chapter 4. Clustering Core Atoms by Location In this chapter, a process for sampling core atoms in space is developed, so that the analytic techniques in section 3C can be applied to local collections

More information

EE 584 MACHINE VISION

EE 584 MACHINE VISION EE 584 MACHINE VISION Binary Images Analysis Geometrical & Topological Properties Connectedness Binary Algorithms Morphology Binary Images Binary (two-valued; black/white) images gives better efficiency

More information

Spectral Classification

Spectral Classification Spectral Classification Spectral Classification Supervised versus Unsupervised Classification n Unsupervised Classes are determined by the computer. Also referred to as clustering n Supervised Classes

More information

Clustering CS 550: Machine Learning

Clustering CS 550: Machine Learning Clustering CS 550: Machine Learning This slide set mainly uses the slides given in the following links: http://www-users.cs.umn.edu/~kumar/dmbook/ch8.pdf http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap8_basic_cluster_analysis.pdf

More information

Online Pattern Recognition in Multivariate Data Streams using Unsupervised Learning

Online Pattern Recognition in Multivariate Data Streams using Unsupervised Learning Online Pattern Recognition in Multivariate Data Streams using Unsupervised Learning Devina Desai ddevina1@csee.umbc.edu Tim Oates oates@csee.umbc.edu Vishal Shanbhag vshan1@csee.umbc.edu Machine Learning

More information

IMAGE SEGMENTATION. Václav Hlaváč

IMAGE SEGMENTATION. Václav Hlaváč IMAGE SEGMENTATION Václav Hlaváč Czech Technical University in Prague Faculty of Electrical Engineering, Department of Cybernetics Center for Machine Perception http://cmp.felk.cvut.cz/ hlavac, hlavac@fel.cvut.cz

More information

Fast and accurate automated cell boundary determination for fluorescence microscopy

Fast and accurate automated cell boundary determination for fluorescence microscopy Fast and accurate automated cell boundary determination for fluorescence microscopy Stephen Hugo Arce, Pei-Hsun Wu &, and Yiider Tseng Department of Chemical Engineering, University of Florida and National

More information

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CHAPTER 4 CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS 4.1 Introduction Optical character recognition is one of

More information

Image Segmentation. Shengnan Wang

Image Segmentation. Shengnan Wang Image Segmentation Shengnan Wang shengnan@cs.wisc.edu Contents I. Introduction to Segmentation II. Mean Shift Theory 1. What is Mean Shift? 2. Density Estimation Methods 3. Deriving the Mean Shift 4. Mean

More information

The organization of the human cerebral cortex estimated by intrinsic functional connectivity

The organization of the human cerebral cortex estimated by intrinsic functional connectivity 1 The organization of the human cerebral cortex estimated by intrinsic functional connectivity Journal: Journal of Neurophysiology Author: B. T. Thomas Yeo, et al Link: https://www.ncbi.nlm.nih.gov/pubmed/21653723

More information

Machine Learning in Biology

Machine Learning in Biology Università degli studi di Padova Machine Learning in Biology Luca Silvestrin (Dottorando, XXIII ciclo) Supervised learning Contents Class-conditional probability density Linear and quadratic discriminant

More information

CS443: Digital Imaging and Multimedia Binary Image Analysis. Spring 2008 Ahmed Elgammal Dept. of Computer Science Rutgers University

CS443: Digital Imaging and Multimedia Binary Image Analysis. Spring 2008 Ahmed Elgammal Dept. of Computer Science Rutgers University CS443: Digital Imaging and Multimedia Binary Image Analysis Spring 2008 Ahmed Elgammal Dept. of Computer Science Rutgers University Outlines A Simple Machine Vision System Image segmentation by thresholding

More information

Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong)

Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong) Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong) References: [1] http://homepages.inf.ed.ac.uk/rbf/hipr2/index.htm [2] http://www.cs.wisc.edu/~dyer/cs540/notes/vision.html

More information

Motion Estimation. There are three main types (or applications) of motion estimation:

Motion Estimation. There are three main types (or applications) of motion estimation: Members: D91922016 朱威達 R93922010 林聖凱 R93922044 謝俊瑋 Motion Estimation There are three main types (or applications) of motion estimation: Parametric motion (image alignment) The main idea of parametric motion

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Part 9: Representation and Description AASS Learning Systems Lab, Dep. Teknik Room T1209 (Fr, 11-12 o'clock) achim.lilienthal@oru.se Course Book Chapter 11 2011-05-17 Contents

More information

Clustering & Dimensionality Reduction. 273A Intro Machine Learning

Clustering & Dimensionality Reduction. 273A Intro Machine Learning Clustering & Dimensionality Reduction 273A Intro Machine Learning What is Unsupervised Learning? In supervised learning we were given attributes & targets (e.g. class labels). In unsupervised learning

More information

CSE152a Computer Vision Assignment 2 WI14 Instructor: Prof. David Kriegman. Revision 1

CSE152a Computer Vision Assignment 2 WI14 Instructor: Prof. David Kriegman. Revision 1 CSE152a Computer Vision Assignment 2 WI14 Instructor: Prof. David Kriegman. Revision 1 Instructions: This assignment should be solved, and written up in groups of 2. Work alone only if you can not find

More information

Artifacts and Textured Region Detection

Artifacts and Textured Region Detection Artifacts and Textured Region Detection 1 Vishal Bangard ECE 738 - Spring 2003 I. INTRODUCTION A lot of transformations, when applied to images, lead to the development of various artifacts in them. In

More information

Emotion Classification

Emotion Classification Emotion Classification Shai Savir 038052395 Gil Sadeh 026511469 1. Abstract Automated facial expression recognition has received increased attention over the past two decades. Facial expressions convey

More information

Simplified model of ray propagation and outcoupling in TFs.

Simplified model of ray propagation and outcoupling in TFs. Supplementary Figure 1 Simplified model of ray propagation and outcoupling in TFs. After total reflection at the core boundary with an angle α, a ray entering the taper (blue line) hits the taper sidewalls

More information

Connected components - 1

Connected components - 1 Connected Components Basic definitions Connectivity, Adjacency, Connected Components Background/Foreground, Boundaries Run-length encoding Component Labeling Recursive algorithm Two-scan algorithm Chain

More information

A Generalized Method to Solve Text-Based CAPTCHAs

A Generalized Method to Solve Text-Based CAPTCHAs A Generalized Method to Solve Text-Based CAPTCHAs Jason Ma, Bilal Badaoui, Emile Chamoun December 11, 2009 1 Abstract We present work in progress on the automated solving of text-based CAPTCHAs. Our method

More information

Introduction to Trajectory Clustering. By YONGLI ZHANG

Introduction to Trajectory Clustering. By YONGLI ZHANG Introduction to Trajectory Clustering By YONGLI ZHANG Outline 1. Problem Definition 2. Clustering Methods for Trajectory data 3. Model-based Trajectory Clustering 4. Applications 5. Conclusions 1 Problem

More information

Cluster Analysis. Mu-Chun Su. Department of Computer Science and Information Engineering National Central University 2003/3/11 1

Cluster Analysis. Mu-Chun Su. Department of Computer Science and Information Engineering National Central University 2003/3/11 1 Cluster Analysis Mu-Chun Su Department of Computer Science and Information Engineering National Central University 2003/3/11 1 Introduction Cluster analysis is the formal study of algorithms and methods

More information

Detection of Ductus in Mammary Gland Tissue by Computer Vision

Detection of Ductus in Mammary Gland Tissue by Computer Vision Detection of Ductus in Mammary Gland Tissue by Computer Vision Katarina Mele and Aleš Leonardis Computer Vision Laboratory Faculty of Computer and Information Science University of Ljubljana Tržaška 25,

More information

Network Snakes for the Segmentation of Adjacent Cells in Confocal Images

Network Snakes for the Segmentation of Adjacent Cells in Confocal Images Network Snakes for the Segmentation of Adjacent Cells in Confocal Images Matthias Butenuth 1 and Fritz Jetzek 2 1 Institut für Photogrammetrie und GeoInformation, Leibniz Universität Hannover, 30167 Hannover

More information

Image analysis in IHC - overview, considerations and applications

Image analysis in IHC - overview, considerations and applications Image analysis in IHC - overview, considerations and applications Workshop in Diagnostic Immunohistochemistry Oud St. Jan/ Old St. John Brugge (Bruges), Belgium June 13th 15nd 2018 Rasmus Røge, MD, NordiQC

More information

A Neural Network Architecture for Automatic Segmentation of Fluorescence Micrographs

A Neural Network Architecture for Automatic Segmentation of Fluorescence Micrographs A Network Architecture for Automatic Segmentation of Fluorescence Micrographs Tim W. Nattkemper 1, Heiko Wersing 1 Walter Schubert 2;3, Helge Ritter 1 1 Neuroinformatics Group, University of Bielefeld,

More information

Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation

Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation Obviously, this is a very slow process and not suitable for dynamic scenes. To speed things up, we can use a laser that projects a vertical line of light onto the scene. This laser rotates around its vertical

More information

Tutorial for cell nucleus intensity clustering on histochemically stained tissue microarrays.

Tutorial for cell nucleus intensity clustering on histochemically stained tissue microarrays. Tutorial for cell nucleus intensity clustering on histochemically stained tissue microarrays. http://www.nexus.ethz.ch/ -> Software -> TMARKER The plugin Intensity Clustering starts on step 7. Steps 1-6

More information

CoE4TN4 Image Processing

CoE4TN4 Image Processing CoE4TN4 Image Processing Chapter 11 Image Representation & Description Image Representation & Description After an image is segmented into regions, the regions are represented and described in a form suitable

More information

Algorithm User Guide:

Algorithm User Guide: Algorithm User Guide: Membrane Quantification Use the Aperio algorithms to adjust (tune) the parameters until the quantitative results are sufficiently accurate for the purpose for which you intend to

More information

09/11/2017. Morphological image processing. Morphological image processing. Morphological image processing. Morphological image processing (binary)

09/11/2017. Morphological image processing. Morphological image processing. Morphological image processing. Morphological image processing (binary) Towards image analysis Goal: Describe the contents of an image, distinguishing meaningful information from irrelevant one. Perform suitable transformations of images so as to make explicit particular shape

More information

8/3/2017. Contour Assessment for Quality Assurance and Data Mining. Objective. Outline. Tom Purdie, PhD, MCCPM

8/3/2017. Contour Assessment for Quality Assurance and Data Mining. Objective. Outline. Tom Purdie, PhD, MCCPM Contour Assessment for Quality Assurance and Data Mining Tom Purdie, PhD, MCCPM Objective Understand the state-of-the-art in contour assessment for quality assurance including data mining-based techniques

More information

Automated Particle Size & Shape Analysis System

Automated Particle Size & Shape Analysis System Biovis PSA2000 Automated Particle Size & Shape Analysis System Biovis PSA2000 is an automated imaging system used to detect, characterize, categorize and report, the individual and cumulative particle

More information

Contents. Supplementary Information. Detection and Segmentation of Cell Nuclei in Virtual Microscopy Images: A Minimum-Model Approach

Contents. Supplementary Information. Detection and Segmentation of Cell Nuclei in Virtual Microscopy Images: A Minimum-Model Approach Supplementary Information Detection and Segmentation of Cell Nuclei in Virtual Microscopy Images: A Minimum-Model Approach Stephan Wienert 1,2, Daniel Heim 2, Kai Saeger 2, Albrecht Stenzinger 3, Michael

More information

Lecture 10: Semantic Segmentation and Clustering

Lecture 10: Semantic Segmentation and Clustering Lecture 10: Semantic Segmentation and Clustering Vineet Kosaraju, Davy Ragland, Adrien Truong, Effie Nehoran, Maneekwan Toyungyernsub Department of Computer Science Stanford University Stanford, CA 94305

More information

Out-of-sample extension of diffusion maps in a computer-aided diagnosis system. Application to breast cancer virtual slide images.

Out-of-sample extension of diffusion maps in a computer-aided diagnosis system. Application to breast cancer virtual slide images. Out-of-sample extension of diffusion maps in a computer-aided diagnosis system. Application to breast cancer virtual slide images. Philippe BELHOMME Myriam OGER Jean-Jacques MICHELS Benoit PLANCOULAINE

More information

Supporting Information. High-Throughput, Algorithmic Determination of Nanoparticle Structure From Electron Microscopy Images

Supporting Information. High-Throughput, Algorithmic Determination of Nanoparticle Structure From Electron Microscopy Images Supporting Information High-Throughput, Algorithmic Determination of Nanoparticle Structure From Electron Microscopy Images Christine R. Laramy, 1, Keith A. Brown, 2, Matthew N. O Brien, 2 and Chad. A.

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Learning without a teacher No targets for the outputs Networks which discover patterns, correlations, etc. in the input data This is a self organisation Self organising networks An

More information

Practice Exam Sample Solutions

Practice Exam Sample Solutions CS 675 Computer Vision Instructor: Marc Pomplun Practice Exam Sample Solutions Note that in the actual exam, no calculators, no books, and no notes allowed. Question 1: out of points Question 2: out of

More information

Toward Automated Cancer Diagnosis: An Interactive System for Cell Feature Extraction

Toward Automated Cancer Diagnosis: An Interactive System for Cell Feature Extraction Toward Automated Cancer Diagnosis: An Interactive System for Cell Feature Extraction Nick Street Computer Sciences Department University of Wisconsin-Madison street@cs.wisc.edu Abstract Oncologists at

More information

Automatically Improving 3D Neuron Segmentations for Expansion Microscopy Connectomics. by Albert Gerovitch

Automatically Improving 3D Neuron Segmentations for Expansion Microscopy Connectomics. by Albert Gerovitch Automatically Improving 3D Neuron Segmentations for Expansion Microscopy Connectomics by Albert Gerovitch 1 Abstract Understanding the geometry of neurons and their connections is key to comprehending

More information

UNIVERSITY OF CALIFORNIA RIVERSIDE MAGIC CAMERA. A project report submitted in partial satisfaction of the requirements of the degree of

UNIVERSITY OF CALIFORNIA RIVERSIDE MAGIC CAMERA. A project report submitted in partial satisfaction of the requirements of the degree of UNIVERSITY OF CALIFORNIA RIVERSIDE MAGIC CAMERA A project report submitted in partial satisfaction of the requirements of the degree of Master of Science in Computer Science by Adam Meadows June 2006 Project

More information

3D RECONSTRUCTION OF BRAIN TISSUE

3D RECONSTRUCTION OF BRAIN TISSUE 3D RECONSTRUCTION OF BRAIN TISSUE Hylke Buisman, Manuel Gomez-Rodriguez, Saeed Hassanpour {hbuisman, manuelgr, saeedhp}@stanford.edu Department of Computer Science, Department of Electrical Engineering

More information

Artificial Neural Networks Unsupervised learning: SOM

Artificial Neural Networks Unsupervised learning: SOM Artificial Neural Networks Unsupervised learning: SOM 01001110 01100101 01110101 01110010 01101111 01101110 01101111 01110110 01100001 00100000 01110011 01101011 01110101 01110000 01101001 01101110 01100001

More information

A Hillclimbing Approach to Image Mosaics

A Hillclimbing Approach to Image Mosaics A Hillclimbing Approach to Image Mosaics Chris Allen Faculty Sponsor: Kenny Hunt, Department of Computer Science ABSTRACT This paper presents a hillclimbing approach to image mosaic creation. Our approach

More information

Feature Detectors and Descriptors: Corners, Lines, etc.

Feature Detectors and Descriptors: Corners, Lines, etc. Feature Detectors and Descriptors: Corners, Lines, etc. Edges vs. Corners Edges = maxima in intensity gradient Edges vs. Corners Corners = lots of variation in direction of gradient in a small neighborhood

More information

The Anatomical Equivalence Class Formulation and its Application to Shape-based Computational Neuroanatomy

The Anatomical Equivalence Class Formulation and its Application to Shape-based Computational Neuroanatomy The Anatomical Equivalence Class Formulation and its Application to Shape-based Computational Neuroanatomy Sokratis K. Makrogiannis, PhD From post-doctoral research at SBIA lab, Department of Radiology,

More information

Clustering algorithms and autoencoders for anomaly detection

Clustering algorithms and autoencoders for anomaly detection Clustering algorithms and autoencoders for anomaly detection Alessia Saggio Lunch Seminars and Journal Clubs Université catholique de Louvain, Belgium 3rd March 2017 a Outline Introduction Clustering algorithms

More information

Look Ahead to Get Ahead

Look Ahead to Get Ahead Microscopy from Carl Zeiss Archive 3D Deconvolution Z-stack 3D Deconvolution Look Ahead to Get Ahead Mark & Find Multichannel Timelapse Greater brilliance and resolution More convenient and precise than

More information

layers in a raster model

layers in a raster model layers in a raster model Layer 1 Layer 2 layers in an vector-based model (1) Layer 2 Layer 1 layers in an vector-based model (2) raster versus vector data model Raster model Vector model Simple data structure

More information

[7.3, EA], [9.1, CMB]

[7.3, EA], [9.1, CMB] K-means Clustering Ke Chen Reading: [7.3, EA], [9.1, CMB] Outline Introduction K-means Algorithm Example How K-means partitions? K-means Demo Relevant Issues Application: Cell Neulei Detection Summary

More information

Using Machine Learning for Classification of Cancer Cells

Using Machine Learning for Classification of Cancer Cells Using Machine Learning for Classification of Cancer Cells Camille Biscarrat University of California, Berkeley I Introduction Cell screening is a commonly used technique in the development of new drugs.

More information

Region-based Segmentation

Region-based Segmentation Region-based Segmentation Image Segmentation Group similar components (such as, pixels in an image, image frames in a video) to obtain a compact representation. Applications: Finding tumors, veins, etc.

More information

Clustering in Data Mining

Clustering in Data Mining Clustering in Data Mining Classification Vs Clustering When the distribution is based on a single parameter and that parameter is known for each object, it is called classification. E.g. Children, young,

More information

Chapter 7: Competitive learning, clustering, and self-organizing maps

Chapter 7: Competitive learning, clustering, and self-organizing maps Chapter 7: Competitive learning, clustering, and self-organizing maps António R. C. Paiva EEL 6814 Spring 2008 Outline Competitive learning Clustering Self-Organizing Maps What is competition in neural

More information

K-Means Clustering Using Localized Histogram Analysis

K-Means Clustering Using Localized Histogram Analysis K-Means Clustering Using Localized Histogram Analysis Michael Bryson University of South Carolina, Department of Computer Science Columbia, SC brysonm@cse.sc.edu Abstract. The first step required for many

More information

MULTI-REGION SEGMENTATION

MULTI-REGION SEGMENTATION MULTI-REGION SEGMENTATION USING GRAPH-CUTS Johannes Ulén Abstract This project deals with multi-region segmenation using graph-cuts and is mainly based on a paper by Delong and Boykov [1]. The difference

More information

Data Mining 4. Cluster Analysis

Data Mining 4. Cluster Analysis Data Mining 4. Cluster Analysis 4.5 Spring 2010 Instructor: Dr. Masoud Yaghini Introduction DBSCAN Algorithm OPTICS Algorithm DENCLUE Algorithm References Outline Introduction Introduction Density-based

More information

SISCOM (Subtraction Ictal SPECT CO-registered to MRI)

SISCOM (Subtraction Ictal SPECT CO-registered to MRI) SISCOM (Subtraction Ictal SPECT CO-registered to MRI) Introduction A method for advanced imaging of epilepsy patients has been developed with Analyze at the Mayo Foundation which uses a combination of

More information

Multi prototype fuzzy pattern matching for handwritten character recognition

Multi prototype fuzzy pattern matching for handwritten character recognition Multi prototype fuzzy pattern matching for handwritten character recognition MILIND E. RANE, DHABE P. S AND J. B. PATIL Dept. of Electronics and Computer, R.C. Patel Institute of Technology, Shirpur, Dist.

More information

Canny Edge Based Self-localization of a RoboCup Middle-sized League Robot

Canny Edge Based Self-localization of a RoboCup Middle-sized League Robot Canny Edge Based Self-localization of a RoboCup Middle-sized League Robot Yoichi Nakaguro Sirindhorn International Institute of Technology, Thammasat University P.O. Box 22, Thammasat-Rangsit Post Office,

More information

Counting Particles or Cells Using IMAQ Vision

Counting Particles or Cells Using IMAQ Vision Application Note 107 Counting Particles or Cells Using IMAQ Vision John Hanks Introduction To count objects, you use a common image processing technique called particle analysis, often referred to as blob

More information

Robust PDF Table Locator

Robust PDF Table Locator Robust PDF Table Locator December 17, 2016 1 Introduction Data scientists rely on an abundance of tabular data stored in easy-to-machine-read formats like.csv files. Unfortunately, most government records

More information

Crop Counting and Metrics Tutorial

Crop Counting and Metrics Tutorial Crop Counting and Metrics Tutorial The ENVI Crop Science platform contains remote sensing analytic tools for precision agriculture and agronomy. In this tutorial you will go through a typical workflow

More information

Unsupervised Learning : Clustering

Unsupervised Learning : Clustering Unsupervised Learning : Clustering Things to be Addressed Traditional Learning Models. Cluster Analysis K-means Clustering Algorithm Drawbacks of traditional clustering algorithms. Clustering as a complex

More information

Chapter 11 Representation & Description

Chapter 11 Representation & Description Chain Codes Chain codes are used to represent a boundary by a connected sequence of straight-line segments of specified length and direction. The direction of each segment is coded by using a numbering

More information

Global Journal of Engineering Science and Research Management

Global Journal of Engineering Science and Research Management ADVANCED K-MEANS ALGORITHM FOR BRAIN TUMOR DETECTION USING NAIVE BAYES CLASSIFIER Veena Bai K*, Dr. Niharika Kumar * MTech CSE, Department of Computer Science and Engineering, B.N.M. Institute of Technology,

More information

Shape-based Diffeomorphic Registration on Hippocampal Surfaces Using Beltrami Holomorphic Flow

Shape-based Diffeomorphic Registration on Hippocampal Surfaces Using Beltrami Holomorphic Flow Shape-based Diffeomorphic Registration on Hippocampal Surfaces Using Beltrami Holomorphic Flow Abstract. Finding meaningful 1-1 correspondences between hippocampal (HP) surfaces is an important but difficult

More information

6. Dicretization methods 6.1 The purpose of discretization

6. Dicretization methods 6.1 The purpose of discretization 6. Dicretization methods 6.1 The purpose of discretization Often data are given in the form of continuous values. If their number is huge, model building for such data can be difficult. Moreover, many

More information

A Keypoint Descriptor Inspired by Retinal Computation

A Keypoint Descriptor Inspired by Retinal Computation A Keypoint Descriptor Inspired by Retinal Computation Bongsoo Suh, Sungjoon Choi, Han Lee Stanford University {bssuh,sungjoonchoi,hanlee}@stanford.edu Abstract. The main goal of our project is to implement

More information

Community Detection. Jian Pei: CMPT 741/459 Clustering (1) 2

Community Detection. Jian Pei: CMPT 741/459 Clustering (1) 2 Clustering Community Detection http://image.slidesharecdn.com/communitydetectionitilecturejune0-0609559-phpapp0/95/community-detection-in-social-media--78.jpg?cb=3087368 Jian Pei: CMPT 74/459 Clustering

More information

coding of various parts showing different features, the possibility of rotation or of hiding covering parts of the object's surface to gain an insight

coding of various parts showing different features, the possibility of rotation or of hiding covering parts of the object's surface to gain an insight Three-Dimensional Object Reconstruction from Layered Spatial Data Michael Dangl and Robert Sablatnig Vienna University of Technology, Institute of Computer Aided Automation, Pattern Recognition and Image

More information

STATS306B STATS306B. Clustering. Jonathan Taylor Department of Statistics Stanford University. June 3, 2010

STATS306B STATS306B. Clustering. Jonathan Taylor Department of Statistics Stanford University. June 3, 2010 STATS306B Jonathan Taylor Department of Statistics Stanford University June 3, 2010 Spring 2010 Outline K-means, K-medoids, EM algorithm choosing number of clusters: Gap test hierarchical clustering spectral

More information

The Detection of Faces in Color Images: EE368 Project Report

The Detection of Faces in Color Images: EE368 Project Report The Detection of Faces in Color Images: EE368 Project Report Angela Chau, Ezinne Oji, Jeff Walters Dept. of Electrical Engineering Stanford University Stanford, CA 9435 angichau,ezinne,jwalt@stanford.edu

More information

Recognizing Handwritten Digits Using the LLE Algorithm with Back Propagation

Recognizing Handwritten Digits Using the LLE Algorithm with Back Propagation Recognizing Handwritten Digits Using the LLE Algorithm with Back Propagation Lori Cillo, Attebury Honors Program Dr. Rajan Alex, Mentor West Texas A&M University Canyon, Texas 1 ABSTRACT. This work is

More information

Image segmentation. Václav Hlaváč. Czech Technical University in Prague

Image segmentation. Václav Hlaváč. Czech Technical University in Prague Image segmentation Václav Hlaváč Czech Technical University in Prague Center for Machine Perception (bridging groups of the) Czech Institute of Informatics, Robotics and Cybernetics and Faculty of Electrical

More information

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Classification Vladimir Curic Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Outline An overview on classification Basics of classification How to choose appropriate

More information

6. Object Identification L AK S H M O U. E D U

6. Object Identification L AK S H M O U. E D U 6. Object Identification L AK S H M AN @ O U. E D U Objects Information extracted from spatial grids often need to be associated with objects not just an individual pixel Group of pixels that form a real-world

More information

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor COSC160: Detection and Classification Jeremy Bolton, PhD Assistant Teaching Professor Outline I. Problem I. Strategies II. Features for training III. Using spatial information? IV. Reducing dimensionality

More information

Colocalization Algorithm. User s Guide

Colocalization Algorithm. User s Guide Colocalization Algorithm User s Guide Copyright 2008 Aperio Technologies, Inc. Part Number/Revision: MAN 0082, Revision A Date: March 7, 2008 This document applies to software versions Release 9.0 and

More information

EE 701 ROBOT VISION. Segmentation

EE 701 ROBOT VISION. Segmentation EE 701 ROBOT VISION Regions and Image Segmentation Histogram-based Segmentation Automatic Thresholding K-means Clustering Spatial Coherence Merging and Splitting Graph Theoretic Segmentation Region Growing

More information

MR IMAGE SEGMENTATION

MR IMAGE SEGMENTATION MR IMAGE SEGMENTATION Prepared by : Monil Shah What is Segmentation? Partitioning a region or regions of interest in images such that each region corresponds to one or more anatomic structures Classification

More information

Surface-based Analysis: Inter-subject Registration and Smoothing

Surface-based Analysis: Inter-subject Registration and Smoothing Surface-based Analysis: Inter-subject Registration and Smoothing Outline Exploratory Spatial Analysis Coordinate Systems 3D (Volumetric) 2D (Surface-based) Inter-subject registration Volume-based Surface-based

More information

Epithelial rosette detection in microscopic images

Epithelial rosette detection in microscopic images Epithelial rosette detection in microscopic images Kun Liu,3, Sandra Ernst 2,3, Virginie Lecaudey 2,3 and Olaf Ronneberger,3 Department of Computer Science 2 Department of Developmental Biology 3 BIOSS

More information

CHAPTER 3 TUMOR DETECTION BASED ON NEURO-FUZZY TECHNIQUE

CHAPTER 3 TUMOR DETECTION BASED ON NEURO-FUZZY TECHNIQUE 32 CHAPTER 3 TUMOR DETECTION BASED ON NEURO-FUZZY TECHNIQUE 3.1 INTRODUCTION In this chapter we present the real time implementation of an artificial neural network based on fuzzy segmentation process

More information

Two-step Modified SOM for Parallel Calculation

Two-step Modified SOM for Parallel Calculation Two-step Modified SOM for Parallel Calculation Two-step Modified SOM for Parallel Calculation Petr Gajdoš and Pavel Moravec Petr Gajdoš and Pavel Moravec Department of Computer Science, FEECS, VŠB Technical

More information

A GENETIC ALGORITHM FOR MOTION DETECTION

A GENETIC ALGORITHM FOR MOTION DETECTION A GENETIC ALGORITHM FOR MOTION DETECTION Jarosław Mamica, Tomasz Walkowiak Institute of Engineering Cybernetics, Wrocław University of Technology ul. Janiszewskiego 11/17, 50-37 Wrocław, POLAND, Phone:

More information

MEASURING THE TOTAL BRAIN VOLUME USING IMAGE J

MEASURING THE TOTAL BRAIN VOLUME USING IMAGE J MEASURING THE TOTAL BRAIN VOLUME USING IMAGE J (1) Open Image J by double-clicking the desktop icon. An Image J menu bar will appear on the screen. (2) Open your first image file by selecting File, then

More information

Norbert Schuff VA Medical Center and UCSF

Norbert Schuff VA Medical Center and UCSF Norbert Schuff Medical Center and UCSF Norbert.schuff@ucsf.edu Medical Imaging Informatics N.Schuff Course # 170.03 Slide 1/67 Objective Learn the principle segmentation techniques Understand the role

More information

Chapter 3 Image Registration. Chapter 3 Image Registration

Chapter 3 Image Registration. Chapter 3 Image Registration Chapter 3 Image Registration Distributed Algorithms for Introduction (1) Definition: Image Registration Input: 2 images of the same scene but taken from different perspectives Goal: Identify transformation

More information

Slide07 Haykin Chapter 9: Self-Organizing Maps

Slide07 Haykin Chapter 9: Self-Organizing Maps Slide07 Haykin Chapter 9: Self-Organizing Maps CPSC 636-600 Instructor: Yoonsuck Choe Spring 2012 Introduction Self-organizing maps (SOM) is based on competitive learning, where output neurons compete

More information

Clustering (Basic concepts and Algorithms) Entscheidungsunterstützungssysteme

Clustering (Basic concepts and Algorithms) Entscheidungsunterstützungssysteme Clustering (Basic concepts and Algorithms) Entscheidungsunterstützungssysteme Why do we need to find similarity? Similarity underlies many data science methods and solutions to business problems. Some

More information

Interpolating Silicon Photomultipliers

Interpolating Silicon Photomultipliers Interpolating Silicon Photomultipliers Peter Fischer, Heidelberg University, Germany (Presenter) Claudio Piemonte, FBK, Italy We present the novel Interpolating Silicon PhotoMultiplier (ISiPM) topology

More information

MODELING FOR RESIDUAL STRESS, SURFACE ROUGHNESS AND TOOL WEAR USING AN ADAPTIVE NEURO FUZZY INFERENCE SYSTEM

MODELING FOR RESIDUAL STRESS, SURFACE ROUGHNESS AND TOOL WEAR USING AN ADAPTIVE NEURO FUZZY INFERENCE SYSTEM CHAPTER-7 MODELING FOR RESIDUAL STRESS, SURFACE ROUGHNESS AND TOOL WEAR USING AN ADAPTIVE NEURO FUZZY INFERENCE SYSTEM 7.1 Introduction To improve the overall efficiency of turning, it is necessary to

More information

Unsupervised Learning

Unsupervised Learning Networks for Pattern Recognition, 2014 Networks for Single Linkage K-Means Soft DBSCAN PCA Networks for Kohonen Maps Linear Vector Quantization Networks for Problems/Approaches in Machine Learning Supervised

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/1/eaao7005/dc1 Supplementary Materials for Computational discovery of extremal microstructure families The PDF file includes: Desai Chen, Mélina Skouras, Bo Zhu,

More information